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The main aim of this paper is to derive an interpolation theorem (Theorem 1)
which implies both a construction of once continuously differentiable functions
which are piecewise polynomial in a domain divided into tetrahedrons (Corollary
1 and Theorem 2) and convergence theorems of the finite element method for
solving three-dimensional elliptic boundary value problems of the fourth order
(Theorems 3 and 4).

1. INTRODUCTION

It is well known [1] that the simplest polynomial in one variable generating
piecewise polynomial functions which are m-times continuously differentiable
is a polynomial of degree 2m + 1. This polynomial is uniquely determined
by the function values and all derivatives up to the m-th order inclusive at
the end-points of a segment. There exist general interpolation theorems
(see, e.g., [2]) from which the convergence of the finite element method
follows.

It is also known (see [3], [4]) that, in the general case, the simplest
polynomial p(x, y) on a triangle, generating piecewise polynomial functions
which are m-times continuously differentiable in a triangulated domain is a
polynomial of degree 4m + 1. The conditions uniquely determining it are of
such a form that considering p(x, y) along the side PiPj of the triangle, i.e.,
setting

o~ s ~ 1,

we obtain a polynomial pes) of degree 4m + 1 determined in such a way that
it generates, as a polynomial in one variable s, 2m-times continuously differ­
entiable functions.
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Extrapolating this fact to the case of three variables it may be expected
that the simplest polynomialp(x, y, z) on the tetrahedron generating piecewise
polynomial functions which are m-times continuously differentiable should
be of such a degree and determined by such conditions that considering it on
the triangular face PiP;Pk of the tetrahedron we obtain a polynomial pes, t)
which generates, as a polynomial in two variables s, t, 2m-times continuously
differentiable functions. Thus the degree of such a polynomial should be
8m + 1.

The case m = 0 is trivial. As to m = 1 and m = 2 the expectation was
confirmed to be true (see [5]). Attempts to do this in the general case have
not yet been successful.

The aim of this paper is to derive an interpolation theorem for the
polynomial of the ninth degree (Theorem 1 and Corollary 1) and using it to
prove the convergence theorems of the finite element method for solving
three-dimensional variational problems of the second order which are
equivalent to elliptic boundary value problems of the fourth order. The
method of the proof of Theorem 1 is a modification of the method which was
developed in the case of two variables in [6] and then generalized in [3].

2. NOTATION

A given closed tetrahedron will be denoted by U, its interior by U. The
vertices and the center of gravity of U will be denoted by Pi (i = 1,... , 4) and
Po, respectively. The centers of gravity of the triangular faces P2PSP4 ,

P1PSP4 , P1P2P4 , and P1P2PS are denoted by Ql , Q2' Qs, and Q4' respec­
tively. The symbols Q}~.8), ... , Q}~.8) denote the points dividing the segment
<PjPk) into s + 1 equal parts.

The symbols Sjk , tjk mean two arbitrary but fixed directions such that the
directions PjPk , Sjk , t jk are perpendicular to one another.

The symbol ni denotes the normal to the triangular face the center of
gravity of which is the point Qi' We orientate ni according to the right-hand
screw rule with respect to the increasing indicesj < k < I of the vertices Pj ,

P k , PI of the face. The symbols Si and ti mean two arbitrary but fixed
directions such that ni , Si , ti are perpendicular to one another.

Let Pj , Pk be two vertices of the triangular face the center of gravity of
which is the point Qi' The symbol Vi;k denotes the direction perpendicular
to the directions ni and PjPk •

Let f be a function of the variables x, y, z and 0:1 :? 0, 0:2 :): 0, O:s :): 0
three arbitrary integers. Setting
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the operator D'" is defined by

ZENf~EK

D'} = ol"''fIox'''l oy"'2 oZ"".

Similarly, if g is a function of the variables g, 'YJ, , then

D"'g = o''''lg/og'''l 0'YJ"'2 0''''.

Let f3I ~ 0, f32 ~ °be two arbitrary integers. Setting

the operators Dl and D1k are defined by

where Of!OSi' Of/oti , 0f/OSik, and Of/Otik denote the derivatives of the function!
in the directions Si , ti , Sik, and tik , respectively. Further, if rp is a function
of two variables g, 'YJ we define

D8rp = 018lrp/og81 0'YJ82.

The symbols Of/ani and Of/OViik denote the derivatives of the functionfin
the directions ni and Vijk , respectively.

3. INTERPOLATION THEOREM

THEOREM 1. Let the function w(x, y, z) be continuous on a closed tetra­
hedron U and have bounded derivatives of the tenth order in the interior U
ofU:

I D"'w(x, y, z)1 :;( MIO ' 10:1 = 10, (x, y, z) E U. (1)

Let

D"'w(Pi) = 0, I 0: I :;( 4; (2)

DfkW(Q:~·8» = 0, I f3/ = s, r = 1,... ,s; S = 1,2; (3)

W(Qi) = 0; (4)

Dl(ow(Qi)/oni) = 0, I f3 I :;( 2; (5)

D"'w(Po) = 0, 10:/:;(1; (6)

where i = 1,..., 4,j = 1,2,3, k = 2,3,4 (j < k). Then it holds on U

[0:1:;(8 (7)



APPROXIMATION ON TETRAHEDRONS 337

where h is the length of the largest edge ofthe tetrahedron U and K is a constant
independent on U and on w(x, y, z). The constant V is defined by

(8)

Vi being the volume of the unit parallelepiped having edges parallel to the edges
of U which intersect at the vertex Pi . The quotient q is defined by

q = .max min(ai/h, bi/h, Ci/h),
'=1.....4

(9)

ai , bi and Ci being the lengths of the edges having the vertex Pi as a common
point.

The interpolation character ofTheorem 1, which will be proved in Section 4,
follows from the following.

COROLLARY 1. A polynomial of the ninth degree

p(x, y, z) = a1 + a2x + a3 y + a4z + ... + a220z9 (10)

is uniquely determined by the conditions (2)-(6) where

w(x, y, z) = p(x, y, z) - f(x, y, z), (11)

f(x, y, z) being a function four-times continuously differentiable on the tetra­
hedron U. Further, if the function f(x, y, z) has bounded derivatives of the
tenth order in the interior U of D,

I ex I = 10, (x, y, z) E U,

then the difference (11) satisfies the inequality (7).

Proof. The number of the conditions (2)-(6) is equal to 220. (The numbers
of the conditions (2), (3), (4), (5), and (6) are equal to 140, 48, 4, 24, and 4,
respectively.) If w(x, y, z) is of the form (11) then the conditions (2)-(6) form
a system of 220 linear equations for the 220 unknown coefficients a1 ,..., a220 .
It is sufficient to prove that the determinant of this system is different from
zero.

Let us assume that the function w(x, y, z) = p(x, y, z) satisfies the
conditions (2)-(6). As, according to Eq. (10),

Drip(x, y, z) = 0, I ex I = 10

it follows from Theorem 1 that p(x, y, z) - O. The inverse implication is
trivial. Corollary 1 is proved.
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Remark. The estimates for derivatives in (7) depend on the geometry of
the tetrahedron. It is natural to ask whether this dependence is essential or
a mere consequence of the used method of proving. An analogous situation
exists in case of interpolation polynomials on the triangle (see [3, 4, 6] or
Lemma 3). Though this problem has not yet been generally solved the fol­
lowing is worth mentioning.

I. The quantity V is a three-dimensional analogy of sin w, w being the
smallest angle of a given triangle, because sin w is the measure of the unit
rhombus having sides parallel to the sides making the angle w.

2. In the two-dimensional case the estimates for derivatives depend just
on sin w because Ijq < 2. In the three-dimensional case the quantity Ijq is
unbounded. (It suffices to consider the tetrahedron with vertices PI(O, 0, 0),
P2(l, 0, 0), Pa(O, E, 0), and Pil, 0, E).)

3. Ciarlet and Wagschal [7] derived by means of multipoint Taylor
formulas the following estimates for the first derivatives in case of inter­
polation polynomials of the first, second, and third degree on n-dimensional
simplexes:

(i = I, ... , n; r = 1,2, 3),

PrCXI , •. " xn ) being the interpolation polynomial of the roth degree of the
function <p(xi , , x n). Cr is a constant independent on the simplex and on the
function <P(XI , , x n), Mr+l is the bound of the derivatives of the order r + 1
of the function <p(x1 , ••• , xn), h is the length of the largest edge of the simplex
and h' the diameter of the inscribed sphere of the simplex.

4. Let us consider the tetrahedron with vertices PI ( -hj2, -klh, 0),
P2(hj2, -klh, 0), PaCO, k 2h, 0) and P4(0, 0, zo) where h, ki , k2 , Zo are positive
numbers satisfying

Under these conditions h is the length of the largest edge of the tetrahedron
P IP2PaP4 •

The second derivatives of the function

are bounded, M 2 = max(8, 2k;1(k1 + k 2)-1), and the interpolation poly­
nomial of the first degree of the function f reads:
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It holds
I(of/oz) - (OP1/ 0Z)I = h2/zo •

If Zo -+ 0 + then both V and hi tend to zero and

I(of/oz) - (op1/oz)l-+ aJ.
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The example introduced proves in case of interpolation polynomials of the
first degree that the estimates for derivatives are dependent on the geometry
of the tetrahedron.

4. SOME LEMMAS AND PROOF OF THEOREM 1

LEMMA 1. Let g(s) be a function of a real parameter s E [0, I], continuous
on [0, I] and having a bounded derivative ofthe order n + 1 in (0, I),

S E (0, /).

Let

So = °< Sl < S2 < ... < Sr = I

(k = 0,... , (Xi - 1; i = 0,... , r)

where '1}kJ are constants and (Xi given integers satisfying

(Xo + (Xl + ... + (Xr = n + 1,

Further, let

Then

S E (0, I)

where j = 0, 1,... , n - 1. C1 , C2 , ... , C2n are constants independent on the
function g(s) and on the interval [0, I].

LEMMA 2. Let

I oJ(p)Josi1
... os;; I :::;; M,

P being a point in the space x, y, z and Sl , ... , Sm (2 :::;; m :::;; 3) arbitrary
directions perpendicular to one another. Then

where 11 ,/2 ,,,,, In are arbitrary directions dependent on the directions Sl , ... , Sm •
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Lemma 1 is proved in [3, Theorem 2J. Lemma 2 can be obtained by means
of Schwarz's inequality. The following lemma is a slight modification of
[3, Theorem 4J, and of [8, Theorem 13].

LEMMA 3. Let the function u(g, 'rJ) have bounded derivatives of the order
n + I on the closed triangle T (n = 8 or 9):

I f31 = n + I,

Let

where oulov is the normal derivative, Ri (i = 1,2,3) the vertices of T, Ro the
center ofgravity of T, S~k) (r = I,..., 3k) the points dividing the sides of T into
k + 1 equal parts and where the indices f3, y, j, k are determined in the case
n = 8 by

I fJ I ~ 3,

and in the case n = 9 by

Irl ~ 2, j = k - I, k = 1,2

I fJ I ~ 4,

Then it holds on T

Irl =0, j = k = 1,2.

IfJl~n-l

where {}n - 0 if € - 0+; c is the length of the largest side ofT, w the smallest
angle of T and Kn a constant independent on T and on u(g, 'rJ).

In what follows we shall use Sobolev's spaces W~1<)(Q) and W~k)(Q)

Q being a connected bounded domain in the space (x, y, z). W4 k )(Q) is the
space of functions having generalized derivatives up to the order k inclusive
which belong to the space L 2(Q). The norm in W4k '(Q) is defined by

II w II:VJk)u1) = I II D~w Ilia<m .
1~I~k

The space W4 k )(Q) consists of functions which together with all generalized
derivatives of the order k belong to L2(Q). The norm is given by

II w 11~(k) em = II wIii (.0) + L II D~w Iii em .
a a 1~I=k 2

In the following considerations we shall often need Sobolev's lemma in
the following special form (see [9]).
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LEMMA 4 (Sobolev). Let Q be a domain starlike with respect to a sphere.
Let 0 ~ m ~ k - 2 and w E W~kl(Q). Then w E CCml(Q) and

max \ Do:w(x, y, z)1 ~ C/I w II~k) (m
("',Y,'lEt.!,I"I,,;;m 2

where the constant C does not depend on w(x, Y, z).

Two parts of the proof ofTheorem 1 will be used in the proof of Theorem 2.
We formulate them, therefore, in Lemmas 5 and 6.

LEMMA 5. Let the function w(x, y, z) be continuous on a closed tetrahedron
V and the inequality (1) hold. Let Tp'''T be the triangular face ofV with vertices
Pp, P" , PT(p < (J < 'T) and QA the center ofgravity of Tp"T . IfEq. (2) holds
for i = p, (J, 'T, Eq. (3) holds for j = p, a, k = a, 'T (j < k) and Eqs. (4), (5)
hold for i = '\, then

I ex I ~ 1, (12)

The meaning of V and h is the same as in Theorem 1 and K1 is a constant
independent on V and on w(x, y, z).

Proof It follows from the assumptions of Lemma 5 that the function
w(x, y, z) belongs to W(lO)(U). Thus, according to Lemma 4, the function
w(x, y, z) is eight-times continuously differentiable on V.

Let us construct a tetrahedron V' with vertices Po', P,,', P/, P/ lying
inside V. Let the faces V' be parallel to the faces of V and lie in a distance 8.
Choosing 8 sufficiently small it holds with respect to the assumptions of
Lemma 5:

I f31 = s; r = 1,... , s; s = 1,2; j = p, a;

I D"w(P/) \ ~ €/3 Io: l /2
,

I D~kW(QJ~'8l)1 ~ €/2 IfJ1 /2,

I ex I ~ 4, i = p, a, 'T; (13)

I w(Q/)! ~ €

I Dl(ow(QA')/onA)! ~ €, \ f3\ ~ 2

k = a, 'T (j < k) (14)

(15)

(16)

where Q/ is the center of gravity of the triangle Pp'P,,'P/ and m~,8l,... , Q~t·8l

are the points dividing the segment <P/Pk') into s + 1 equal parts. Using
Lemma 2 we obtain from (13) and (14):

I o8w(Q-(r,$»/ov$ I ~ €
ik Mk '" ,

I ex I ~ 4

r = 1,... , s; s = 1,2.

(17)

(18)
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Let ~, Tj, ~ be a Cartesian coordinate system the (~, Tj)-plane of which is
identical with the plane determined by the points Pp ', P,/, P/. Let the
directions of the axes g, Tj, and ~ be parallel to the directions SA , tA , and nA ,

respectively. Let

x = x(~, Tj, n== x + ang + a 12Tj + a13~

y = y(g, Tj, ~) == y + a 21g + a 22Tj + a 23t
z = z(g, Tj, t) == z + a 31g + a 32Tj + a33t

(19)

be the transformation between the systems x, y, z and g, Tj, {, (x, y, z) being
the coordinates of the origin of the system g, Tj, t in the system x, y, z. Let us
define the function

(20)

Then, according to (I), (15)-(20), and Lemma 2, it is easy to see that the
functions

(21)

and

(22)

satisfy the conditions of Lemma 3 with N lO = 35M lO and Ng = 35M lO ,

respectively. Hence, according to Lemma 3 and (21), (22), it holds for
(g, Tj, t) E 1";07

(23)

where {} --+ 0 if € --+ O+. r;07 is the triangle with vertices P;' (i = p, G, T),
Cis the length of the largest side of 1";,n , w is the smaHest angle of 1';07 and A
is a constant independent on 1";07 and on w(g, Tj, ~). Further, it holds

sin w ~ V, lim c = c ~ h.
E~O+

Thus, returning to the variables x, y, z and letting E ---.. 0+, we obtain by
means of (23) (with respect to orthogonality of the matrix of the transfor­
mation (19» the inequality (12).

LEMMA 6. Let the function w(x, y, z) be continuous on a closed tetrahedron
V and the inequality (1) hold. Let Pp , Po be two vertices of the tetrahedron V.
If Eq. (2) holds for i = p, G and Eq. (3) holds for j = p, k = G then

lex I ~ 2,
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where h is the length of the largest edge of '0' and K2 is a constant independent
on '0' and on w(x, y, z).

Making use of Lemma 1 we can prove Lemma 6 in a similar way as
Lemma 5.

ProofofTheorem 1. Let us choose the notation of the vertices Pi(Xi, Yi, Zi)
(i = 1,...,4) in such a way that

(24)

aI' bl and Cl being the lengths of the segments <PlP2), <PlP3), and <PlP4),

respectively. Let (PI' P2' P3), (Ul' U2, u3), and (Tl ,T2' T3) be the unit vectors
which are parallel to the directions PlP2, PlP3, and PlP4 , respectively. Then
the transformation

x = x(g, Yj, ~) - Xl + alPlg + blUlYj + ClTl~

Y = y(g, Yj, 0 == Yl + alP2g + blU2Yj + Cl T2'

Z = z(g, Yj, ~) == Zl + alP3g + b1u3Yj + ClT3~

(25)

maps one-to-one the tetrahedron '0' on the tetrahedron '0'0 which lies in the
Cartesian coordinate system g, Yj, ~ and has the vertices Rl(O, 0,0), R2(1, 0,0),
R3(0, 1,0), and RiO, 0,1). We shall distinguish between two cases: M 10 > °
and M lo = 0.

In the case M IO > °let us introduce the function

It holds with respect to (25) and (26)

Olo:IV(g, Yj, s)
OgO:l OYj0:2 8~0:3

a~lb~2c~3 olo:lw(x, Y, z)
MlohlO op0:1 OU0:2 OT0:3 '

ow/Op, ow/ou, and OW/OT being the derivatives in the directions P1P2 , P1P3 ,
and P1P4 , respectively. Hence, according to (1)-(6) and Lemmas 2,5, and 6,

1Do:v(g, 'I}, 01 ~ 35, I ex I = 10, (g, Yj, 0 E Uo ; (27)

Do:v(Ri) = 0, I ex 1~ 4, i = 1,...,4; (28)

Do:v(Ro) = 0, 1ex I ~ 1; (29)

I Do:v(R)1 ~ 310:1/2KIV-10:1, I ex I ~ 1, R E 'O'o\Uo ; (30)

I Do:v(R) I ~ 310: 1/2K2, I ex 1~ 2, R E <RiRj )

(i =1= j; i,j = 1,... ,4); (31)
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where Uo is the interior ofUo and Rothe center ofgravity ofUo . The function
v(g, 7], ~), being continuous on Uo and having bounded derivatives of the
tenth order in Uo , belongs to W~10)(Uo). Thus, according to Lemma 4,
v(g, 7], nis eight-times continuously differentiable on Uo •

Let us assume that we succeeded in proving the inequalities

I D~v(Rl)1 ~ C1 V-I,

I D~v(R2)1 ~ C2V-\

I D~v(R4)1 ~ C3 V-I,

I Ci I = 5,6;

I Ci I = 5,6;

I Ci I = 5.

(32)

(33)

(34)

(Here and in the fOllowing text the symbols C1 , ... , C21 denote absolute
constants, i.e. constants independent on the function w(x, y, z) and on the
tetrahedron U.) Let us consider the function

S4 being the center of gravity of the triangular face R1R2R3 • As the lengths
of the segments <R4S4>and <R4Ro>are equal to 111/ 2/3 and I Jl/2/4, respec­
tively, it holds, according to (27)-(30), (34), and Lemma 2,

Igi10)(s)[ ~ 310, S E (0, 1Jl/2/3)

[giiJ(O)1 ~ 3jf2C
3
V-I, gik )(1 P/2/4) = 0

Igik)(IJl/2/3)! ~ 3kK1 V-k (j = 0,... ,5; k = 0, I).

Using Lemma I we obtain

S E [0, 1Jl/2/3].

As V-I > I we can write, setting C6 = C4 max(35/2C3 , 3K1) + II5CS ,

(35)

Now, let R be an arbitrary point of the interior of the triangle R 2R4S13 ,

813 being the midpoint of the segment <R1R3>. Let Rs be the crossing point
of the triangular face R1R3R4 and the line determined by the points R2 , R.
Let us consider the function

It holds, according to (27) and Lemma 2,

Ig~10)(S) I~ 310
, SE (0, I),

I being the length of the segment <R2R5). Denoting by 11 the distance between
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R2 and the crossing point of the segments <R2R5) and <R4S4 ) we can write
with respect to (28), (30), (33), and (35):

I g~il(O)1 :::;;; 3jf2C2V-\ Ig2(/1)! :::;;; C6 V-I

I g~k)(/)I :::;;; 3kK
l
V-k (j = 0,... ,6; k = 0, 1).

As I < 21 / 2 we obtain by means of Lemma 1

RET, (36)

T being the interior of the triangle R2~Sla .
At the end, let R be an arbitrary point of Uo • Denoting by R' the crossing

point of the line RlR and the triangular face R2RaR4 and considering the
function ga(s) = V I<R R') we can prove by means of (27), (28), (30), (32), (36),

1

and Lemma 1, similarly as in the case of the function g2(S), that it holds

Iv(R) I :::;;; CSV-l, R E Uo .

The estimates (27), (30), and (37) imply

II V Ilw~10)(Uo) :::;;; C9V-l.

Making use of Lemma 4 we get from (38)

(37)

(38)

I a I :::;;; 8, (39)

As IJ I = a1blclVl ~ alblclV, J being the Jacobian of the transformation
(25), we get from (25)

I 8g/8x I,

I 8Tj/8x I,

I 8~/8x I,

I og/oy I,

I oTj/oy I,

I o~/oy I,

1 og/oz I :::;;; allV-I

I OTj/oz I :::;;; bl l V-I

\ o~/oz I :::;;; cl l V-I.

(40)

Expressing the function w(x, y, z) in the form

w(x, y, z) = MlOhIOv(g(x, y, z), Tj(x, y, z), ~(x, y, z»

we obtain by means of (24), (39), and (40) the estimation (7).
To finish the proof it remains to prove the inequalities (32)-(34). Let Do'

be a tetrahedron lying inside Do and having faces parallel to the faces of Do
in a distance 8. Choosing 8 sufficiently small it holds with respect to (30)
and (31)

ID"'v(R)I :::;;; E + 31"'1/2Kl V-I"I,

ID"v(R)I ~ E + 31"1/2K2,

I a I :::;;; 1, R E Do'\Uo'

\ a 1 ~ 2, R E <R/R/),

(41)

(42)
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VO' being the interior of Vo' and R/ (i = 1, ... ,4) the vertices of Vo'. Let us
consider the functions

It holds, according to (27) and (42),

gE [0, I],

I being the length of the segment <RI'R2' ). Using Lemma 1 and letting
€ -+ 0+ we obtain

gE [0, 1], (43)

Considering the functions O~1+"'3V/Og~l O~~3(IXI+a3~2) and O~1+~2V/og~1 07]~2

(IXI + IX2 ~ 2) on the segments <RI 'R3') and <RI'R4'), respectively, we prove

I D"'v(O, 7], 0)1 ~ Cl2 ,

1D"'v(O, 0, ~)I ~ C13 ,

7] E [0, 1],

~ E [0, 1],

I IX I = 5, 6; IXI + IX3 ~ 2;

I IX I = 5, 6; IXI + IX2 ~ 2.

(44)

(45)

In the case I IX I = 5 it remains to estimate the derivatives

(46)

Let us consider the function

gis) = ovjo~ I<Rl'S~3> ,

S~3 being the midpoint of the segment <R2'R3'). It holds, according to (27),
(41), and Lemma 2,

S E [0, 1'],

I' being the length of the segment <RI'S~3)' Using Lemma and letting
€ -+ 0+ we obtain

where ov/os is the derivative in the direction (21/2/2,21/2/2,0). The estimates
(43), (44), and (47) imply

with CIS = 5(Cn + C I2)/6 + 2C14/3. The last two derivatives (46) can be
estimated similarly by considering the functions ovjo7] and ovjog on the
segments <Rr'S~> and <Rl'S~>, respectively.
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To prove (32) it remains to estimate the derivatives
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D(3,3,OlV(R
1
),

D(3.2,I)V(R
1
),

D(3,1,2lv(R
1
),

D(I,3,2)V(R
1
),

D(2,2,2)V(R
1
)·

D(3,O,3lV(R
1
),

D(2.3,llV(R
1
);

D(2,l,3)V(R
1
);

D(1,2,3)V(R
1
);

(48)

(49)

(50)

(51)

(52)

In the case of (48) we can manage it by considering the functions OV/o'T} ,
ov/og, and ov/o~ on the segments <Rl'S~3)' <Rl'S~4)' and <Rl'S~4)' respec­
tively,

The derivatives (49) will be estimated simultaneously. Let us consider the
functions

Q~ and Q;3 being the points which divide the segment <R2'R3') into thirds.
The inequalities (27) and (41) imply by means of Lemma 1

(53)

where ov/os and ov/ot denote the derivatives in the directions (2(51/2/5),
51/ 2/5,0) and (51 / 2/5, 2(51/ 2/5),0), respectively. It follows from (43), (44), and
(53)

The derivatives (50) and (51) can be estimated similarly.
Having estimated all derivatives D<Xv(R1)([ ex I = 6) except for (52) we can

derive
[D(2,2,2)V(R1)! ,;:;; C20V-1

by considering the function g7(S) = v I<R S) , SI being the center of gravity
1 1

of the triangular face R2R3R4 .
To derive (33) let us map the tetrahedron Do by the transformation

g = 1 - K - .\ - x, 'T} = .\, (54)

on the tetrahedron D1 lying in the Cartesian coordinate system K, .\, X and
having the vertices A1(0, 0, 0), A2(1, 0, 0), A 3(0, 1,0), and AlO, 0, 1). Defining
the function

U(K, .\, X) = v(1 - K - .\ - X, .\, X)

and repeating the preceding considerations we obtain

I ex I = 5,6. (55)
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As the point R 2 is mapped by (54) on the point Al the estimation (55) implies
(33). The estimation (34) can be obtained similarly. Theorem 1 is proved in
the case M IO > 0.

If M lO = °then the inequality

I Daw(x, y, z)1 ~ ..1, I ex I = 10, (X,y,Z)E U

holds for arbitrary ..1 ~ 0. Repeating the preceding proof with M IO = ..1 > 0,
where ..1 is arbitrarily small, and letting ..1 -+ 0+ we complete the proof of
Theorem 1.

5. ApPLICATIONS

Let Q be a bounded simply or multiply connected domain in £3 with the
boundary r consisting of a finite number of polyhedrons ri (i = 0,... , s);
rl , ... , rs lie inside of ro and do not intersect. Let IDl be a set of a finite
number of closed tetrahedrons having the following properties: (1) the union
of all tetrahedrons is Q; (2) two arbitrary tetrahedrons are either disjoint
or have a common vertex or a common edge or a common face.

Let Nt, N v , and Nt be the total numbers of the tetrahedrons, ofthe vertices
and of the triangular faces in the division IDl, respectively. The tetrahedrons
of IDl will be denoted by Vi (i = I, , Nt), the vertices by Pi (i = 1,... , N v)

and the triangular faces by 'Ii (i = I, , Nt). The symbol Qi denotes now the
center of gravity of the triangle 'Ii . The normal ni to the face 'Ii is oriented
according to the rule introduced in Section 2. The meaning of the symbols
mt·S

), ... , QJtS
) is the same as in Section 2. The center of gravity of the

tetrahedron Vi is denoted by PJi). Similarly as in Section 2 to each edge PjPk

there are prescribed two directions Sjb tjk and to each normal ni two directions
Si , ti •

Let there be prescribed at each point Pi thirty-five values D'1(Pi ) (/ ex I ~ 4),
at each point QJt· I

) two values D:d(QJt·IJ)(/ f3 I= I), at each point Qj~.2)

three values Dfd(QJ~·2» (/ f3 I = 2), at each point pJil four values D'1(p~i»

([ ex I ~ 1) and at each point Qi one valuef(Qi) and six values Dl of(Qi)/oni
(I f3 I ~ 2). Then on each tetrahedron Vi there is uniquely determined a
polynomial of the ninth degree p;{x, y, z) and the following theorem holds.

THEOREM 2. The function

g(x, y, z) = Pi(X, y, z), (x, y, z) E Vi (i = 1,... , Nt) (56)

is once continuously differentiable on the domain lJ.
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Theorem 2 was proved in [5]. However, another proof of Theorem 2
follows immediately from Lemma 5. Let the tetrahedrons Vi and Vi have1 2 _

the triangle 'fA as a common face. Let Pp , Pa , P.,. be the vertices of TA •

Then the polynomial p(x, y, z) = Pi (x, y, z) - Pi (x, Y, z) satisfies all
1 2

assumptions of Lemma 5 with M lO = o. Thus, according to (12),

I ex \ ~ 1, (x, y, z) E 1\ .

Moreover, making use of Lemma 6 we can prove in the same way that the
function (56).is twice continuously differentiable on the edges (PjPk ) in the
division fit

Let us denote the set of all functions of the type (56) by G(9R). The set
G(9R) is a finite-dimensional space with

dim G(9R) = 35Nv + 7Nt + 4Nt + 8Ne

where the integers N v , Nt, and Nt are defined above and N e is the total
number of the edges (PjPk ) in the division fit

It is clear that G(9R) C W~2)(.Q). Thus we can use the functions of the type
(56) as trial functions in the finite element procedure for solving three­
dimensional boundary value problems of elliptic equations of the fourth
order. We restrict ourselves to the variational formulation of the problem.

Let H C W~2)(.Q) be a real Hilbert space with the norm induced by W~2)(.Q).

Let a(v, w) be a real bilinear form continuous on H X H, i.e., a mapping
(v, w) -- a(v, w) from H x H into the field of real numbers which is linear
in both v and wand bounded:

Vv, WEH (57)

where M is a constant independent on v, w. Further, let the form a(v, w) be
symmetric,

and H-elliptic, i.e.,

a(v, w) = a(w, v), Vv,w E H, (58)

a(v, v) ;;?: K II V 11~~2)(!;l) , VVEH (59)

where K > 0 is a constant independent on v. Finally, let L(v) be a linear
functional continuous on H. Then (see [10]) there exists just one U E H such
that

a(u, v) = L(v), VVEH. (60)

It is well known that u satisfies Eq. (60) if and only if u minimizes sharply
on H the functional

F(v) = (lf2)a(v, v) - L(v). (61)
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The space H is determined by the stable homogeneous boundary con­
ditions of the boundary value problem to which the given variational problem
corresponds. In our case of tetrahedral elements we must restrict our con­
siderations to such cases when the part F' of F on which the stable boundary
conditions are prescribed can be covered by a finite number of triangles. In
this case we can choose the division IDl in such a way that F' is a union of
some triangular faces T;.

The approximate solution of the given variational problem is then defined
as the function which minimizes the functional (61) on the space G(IDl) n H.
(G(IDl) n H is the space ofall functions of G(IDl) satisfying the stable boundary
conditions in the classical sense.) It follows immediately from (59) that there
exists just one function of this property.

Now, let {IDl,,} be a set of divisions of {J into closed tetrahedrons with the
following properties:

(62)

h being the length of the largest edge in IDl" , qh the smallest quantity (9) in
IDlh and Vh the smallest quantity (8) in IDlh • Let H h = G(IDlh ) n Hand u"
be the approximate solution of the given variational problem on H h • The
following two convergence theorems hold.

THEOREM 3. Under the assumptions (57)-(59) and (62) it holds

lim II u" - U 11w:(2)CQ) = 0,
h~O 2

u being the exact solution of the given variational problem.

(63)

The proof of Theorem 3 goes in the same lines as the proof of the con­
vergence theorem introduced in [11]; instead of [6, Theorem 3] we use
Theorem 1. Further, Theorem I allows us to state a sufficient condition for
the maximum rate of convergence.

THEOREM 4. Let the conditions (57)-(59) and (62) be satisfied and the exact
solution u(x, y, z) have bounded derivatives of the tenth order in Q,

Then

I D"-u(x, y, z)! ~ M lO , I ex I = 10, (x, y, z) E Q. (64)

(65)

where the constant C does not depend on the division IDl and on the exact
solution u(x, y, z).
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Proof According to [12, p. 365], it holds

351

Let ep be the function from H" having the same values at the points Pi'
Q~~'S), Pcii ), Q i as the exact solution u. Making use of Corollary 1 we can state

II u - ep IIwJ'I<Q) ~ C'M10hA

where the constant C' depends on qo, Vo and mes Q only. As ep E H" the
last two inequalities imply the estimate (65). Theorem 4 is proved.
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